China Custom Manufacturers Customized Made Wx Wxd Single Universal Coupling Cross Drive Shaft Retractable Universal Joint

Product Description

Manufacturers Customized Made WX WXD Single Universal Coupling Cross Drive Shaft Retractable Universal Joint
 

Description:

The Torque is Large, and the Transmission inertia is Small and Large Adjustment AngleCan isolate and absorb vilbration and shock without worying about the nonconcentricitybetween the 2 shafts.The Set Screw is Easy to Install and Has a Long Senvice Life.Single and double sections are available, with a maximum angle of rotation of 45° persection.The Maximum Speed is up to 1000 rpm and the Keyway is Optional and Customized.

 

Features:
1. Applicable to the transmission occasions connecting the angles of the 2 axes on the same plane <=45°, transmitting the nominal torque 11.2~1120 N.m
2. The angle between the largest axes of each section is 45°.
3. The finished hole tolerance is H7, and the keyway, hexagonal bore and square bore can be opened according to GB/T3852-1997.
4. Allowing the angle between the 2 axes to vary within a limited range as the job requires.
5. There are 2 types of plain bearings and needle bearings, according to user requirements.
6. The maximum speed with sliding bearings is 1000 rpm.
7. The dynamic load with needle roller bearings is high, the bearing clearance is small, and the maximum speed can reach 4000 rpm.
8. Material: 35CrMo/42CrMo alloy steel, 304/316 stainless steel.
9. Joint hardness (HRC43 ° ~ 46 °), pin carburizing hardness (HRC38 ° ~ 42 °) slider vacuum processing hardness (HRC45 ° ~ 50 °)
 

Product parameters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

drive coupling

Are There Specific Safety Precautions to Consider When Working with Drive Couplings?

Yes, working with drive couplings requires certain safety precautions to ensure the safety of personnel and the integrity of the equipment. Here are some important safety considerations when dealing with drive couplings:

  • Lockout-Tagout (LOTO): Before performing any maintenance or repair work on machinery with drive couplings, it is essential to implement a proper lockout-tagout procedure. This involves isolating and securing the power source and equipment to prevent unexpected startup during the maintenance process. Only authorized personnel should have access to the equipment during LOTO procedures.
  • PPE (Personal Protective Equipment): Personnel working on or near drive couplings should wear appropriate personal protective equipment, including safety glasses, gloves, and any other required protective gear. This helps protect against potential hazards such as flying debris or pinch points.
  • Proper Installation: During installation, it is crucial to follow the manufacturer’s guidelines and instructions to ensure the drive coupling is correctly aligned and mounted. Proper alignment minimizes stresses on the coupling and associated machinery, reducing the risk of premature failure and potential accidents.
  • Regular Inspections: Implement a schedule for regular inspections of drive couplings to identify any signs of wear, misalignment, or damage. Addressing issues early can prevent unexpected failures and reduce the risk of accidents or production downtime.
  • Load and Speed Limits: Respect the specified load and speed limits of the drive coupling. Exceeding these limits can lead to catastrophic failures and pose safety risks to personnel and equipment.
  • Maintenance by Qualified Personnel: Complex maintenance or repair tasks on drive couplings should be performed by qualified personnel with relevant experience and training. Improper maintenance can compromise the coupling’s performance and lead to safety hazards.
  • Temperature Limits: Some drive couplings have temperature limits for safe operation. Ensure that the operating temperature is within the recommended range to avoid material degradation and potential hazards.
  • Proper Lubrication: If the drive coupling requires lubrication, use the recommended lubricant and apply it as per the manufacturer’s guidelines. Inadequate or excessive lubrication can impact the coupling’s performance and increase the risk of failure.
  • Safe Distance: Keep a safe distance from rotating couplings and rotating machinery to prevent accidental contact with moving parts. Implement barriers or guarding to prevent unintentional access.

Adhering to these safety precautions ensures that working with drive couplings is done safely and efficiently, minimizing the risk of accidents and maintaining the longevity of the equipment.

drive coupling

Exploring the Use of Elastomeric Materials in Flexible Drive Couplings

Elastomeric materials play a vital role in the design and function of flexible drive couplings. These materials are known for their unique properties, including flexibility, resilience, and damping capabilities, making them well-suited for various power transmission applications. Here are some key aspects of elastomeric materials in flexible drive couplings:

  • Flexibility: Elastomeric materials, such as natural rubber and synthetic elastomers like polyurethane and neoprene, exhibit high flexibility. This flexibility allows them to deform under load, accommodating misalignments and absorbing shocks and vibrations during operation. The ability to flex helps prevent undue stress on the connected machinery and ensures a smooth and reliable power transmission.
  • Damping: Elastomers possess excellent damping characteristics, which means they can absorb and dissipate energy when subjected to torsional vibrations and dynamic loads. This damping property is crucial in minimizing resonance and preventing harmful vibrations from propagating through the system. Couplings with good damping capabilities offer improved system stability and reduced wear on components.
  • Resilience: Resilience refers to the ability of elastomeric materials to return to their original shape after being deformed by torque or misalignment. This property ensures that the coupling remains functional even after experiencing temporary overloads or torsional stresses. The resilience of elastomers contributes to the longevity and reliability of the coupling.
  • Easy Installation: Elastomeric couplings are often designed with a simple and compact structure, making them easy to install and maintain. Their flexibility allows for quick assembly and disassembly, which can be advantageous during equipment maintenance and repairs.
  • Misalignment Compensation: The high flexibility of elastomeric materials allows the coupling to compensate for both angular and parallel misalignments between shafts. This ability to tolerate misalignments without transmitting excessive loads to connected equipment protects the machinery from premature wear and damage.
  • Cost-Effectiveness: Elastomeric couplings are generally more cost-effective compared to other types of couplings with elaborate designs. Their simple construction and use of elastomeric materials make them an economical choice for various industrial applications.

Elastomeric materials offer a compelling combination of mechanical properties that make them highly suitable for flexible drive couplings. When selecting a coupling for a specific application, considering the type and characteristics of the elastomeric material used is crucial to ensure the coupling meets the performance requirements and environmental conditions of the system.

drive coupling

How to Diagnose and Fix Common Problems with Drive Couplings?

Drive couplings, like any mechanical component, can experience issues over time. Diagnosing and fixing these problems promptly is essential to ensure the proper functioning of the power transmission system and prevent further damage. Here’s a step-by-step guide to diagnose and fix common problems with drive couplings:

  1. Visual Inspection: Start by visually inspecting the drive coupling and surrounding components. Look for signs of wear, cracks, or damage in the coupling’s flexible elements, bolts, and connections.
  2. Check for Misalignment: Misalignment is a common cause of drive coupling problems. Use alignment tools to check if the shafts connected by the coupling are properly aligned. Misalignment can lead to premature wear and vibration issues.
  3. Listen for Unusual Noises: Unusual noises like clunking, rattling, or grinding may indicate problems with the drive coupling. Pay attention to any sounds while the vehicle is in motion.
  4. Inspect for Fluid Leaks: Check for any transmission fluid leaks around the drive coupling area. Fluid leaks can lead to insufficient lubrication and cause further damage.
  5. Test for Slippage: Slippage can occur if the drive coupling is not securely transmitting power. Perform tests to see if the transmission slips out of gear or has difficulty engaging.
  6. Monitor Power Loss: If the vehicle experiences power loss or reduced acceleration, it may be due to a faulty drive coupling. Monitor the engine’s performance and power delivery.
  7. Inspect Bolts and Fasteners: Loose or worn bolts and fasteners can lead to coupling problems. Check and tighten all connections as needed.
  8. Examine Torsional Flexibility: For flexible drive couplings, assess the torsional flexibility to ensure it can accommodate torque fluctuations and prevent damage from torque spikes.
  9. Replace Damaged Coupling: If you find any issues with the drive coupling during inspection, replace the damaged coupling with a new one that matches the required specifications.
  10. Realign Shafts: If misalignment is detected, realign the shafts to the manufacturer’s recommended tolerances. Proper alignment will help prevent future problems.
  11. Lubricate as Needed: Some drive couplings require periodic lubrication. Ensure that the coupling is adequately lubricated as per the manufacturer’s guidelines.
  12. Perform Test Runs: After fixing the drive coupling or making adjustments, perform test runs to ensure that the transmission functions smoothly and there are no unusual noises or vibrations.

It’s essential to follow the manufacturer’s guidelines and maintenance schedules for the specific drive coupling used in your vehicle. Regular maintenance and inspections can help identify and address potential problems early, preventing costly repairs and ensuring the longevity of the power transmission system.

China Custom Manufacturers Customized Made Wx Wxd Single Universal Coupling Cross Drive Shaft Retractable Universal Joint  China Custom Manufacturers Customized Made Wx Wxd Single Universal Coupling Cross Drive Shaft Retractable Universal Joint
editor by CX 2024-03-27

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *