China manufacturer Ductile Iron Rigid or Flexible Coupling

Product Description

 

CDU Ring Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Working pressure:1.6-4.0Mpa/6.4Mpa/10Mpa/1.0-2.5Mpa
Feature:1.easy to install, easy to disassemble, and 5-10 times higher work efficiency.2.The connection is flexible, effectively reduce mechanical vibration, and the seismic effect is excellent.3.It can rotate 360 degrees around the tube axis and adjust the wear surface easily.4.The sequence of pipe rows is arbitrary, and can be constructed head-to-head or separately.5.Wear resistance, corrosion resistance, long service life.
Applications:High pressure pipe system for underground coal mine, high pressure pipe system for industrial and mining, fire fighting pipe system for high-rise buildings.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

KRJ shoulder Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Working pressure:10Mpa/6.4Mpa/4Mpa/2.5Mpa/1.6Mpa.
Feature:Has a self-sealing effect.Reliable performance and easy installation.
Applications:Common pressure pipe system for underground coal mine, common pressure pipe system for industrial and mining, high-rise building fire pipe system.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

 

KRH short  Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Working pressure:1.0-10Mpa/1.0-2.5Mpa/1.0-1.6Mpa
Feature:Has a self-sealing effect.Reliable performance and easy installation.
Applications:Common pressure pipe system for underground coal mine, common pressure pipe system for industrial and mining, high-rise building fire pipe system.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

 

Grooved Flexible High Pressure Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Size range:33~325mm
Working pressure:10Mpa
Feature:
1.Flexible connection, strong adaptability, can provide 0~4 degrees of deflection Angle.
               2.It has the function of shock absorption and heat expansion and contraction.
               3.The joint surface can be hot-dip galvanized or plasticized.
Applications:High pressure pipe system for underground coal mine, high pressure pipe system for industrial and mining, fire fighting pipe system for high-rise buildings.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

 

FAQ

Q1. What is your terms of packing?

A: Generally, we pack our goods in neutral white wearable woven bags. If you have legally registered patent, 
we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages 
before you pay the balance.

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will take 20 to 60 days after receiving your advance payment. The specific delivery time depends 
on the items and the quantity of your order.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the cost implications of using flexible couplings compared to other coupling types?

When considering the cost implications of using flexible couplings compared to other coupling types, several factors come into play. While flexible couplings may have a higher upfront cost in some cases, they often offer cost savings in the long run due to their advantages and reduced maintenance requirements.

  • Upfront Cost: In terms of upfront cost, flexible couplings can vary depending on the design, material, and size. Some high-performance flexible couplings with specialized features may have a higher initial cost than simpler coupling types. For instance, certain specialized couplings used in demanding applications like high-speed precision machinery or corrosive environments might be more expensive.
  • Maintenance Costs: Flexible couplings generally have lower maintenance costs compared to certain rigid coupling types. Rigid couplings, such as gear couplings or disc couplings, may require periodic maintenance to check for wear, lubrication, and alignment. In contrast, many flexible couplings, especially those with elastomeric elements, are self-lubricating and require little to no maintenance.
  • Reduced Downtime: Due to their ability to accommodate misalignments and dampen vibrations, flexible couplings can reduce the wear and tear on connected equipment. This reduction in wear can lead to less frequent downtime for repairs or replacements, resulting in improved productivity and cost savings.
  • Longevity: Flexible couplings are designed to absorb shocks and vibrations, which can extend the lifespan of connected equipment. By minimizing stress and wear on components, flexible couplings contribute to the longevity of machinery and reduce the need for premature replacements.
  • Energy Efficiency: Some flexible couplings, such as beam couplings or certain elastomeric couplings, have low mass and inertia, contributing to better energy efficiency in rotating systems. By reducing energy losses, these couplings can result in cost savings over time.
  • Application Specificity: In some cases, specialized coupling types might be necessary to meet specific application requirements. While these specialized couplings may have higher costs, they are designed to optimize performance and reliability in those specific scenarios.
  • Compatibility and Adaptability: Flexible couplings are often more versatile in terms of accommodating shaft misalignment and different shaft sizes. Their adaptability can reduce the need for custom-made or precisely machined components, potentially saving costs in certain installations.

Overall, the cost implications of using flexible couplings compared to other coupling types depend on the specific application and its requirements. While they may have a higher initial cost in some cases, the long-term benefits, such as reduced maintenance, increased equipment longevity, and improved system efficiency, often justify the investment in flexible couplings.

flexible coupling

How does a flexible coupling handle misalignment in large rotating equipment?

Flexible couplings are designed to accommodate various types of misalignment in large rotating equipment, ensuring smooth and efficient power transmission while minimizing stress on connected components. Here’s how flexible couplings handle different types of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two connected shafts are not collinear and form an angle. Flexible couplings can handle angular misalignment by allowing the coupling elements to flex and move slightly, thus accommodating the angle between the shafts. The flexible elements, often made of elastomeric materials or metallic membranes, can bend and twist to compensate for angular misalignment, ensuring that the coupling remains engaged and transfers torque effectively.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the two shafts are not perfectly aligned along their axes, resulting in a lateral shift. Flexible couplings can handle parallel misalignment through their ability to move radially, allowing the flexible elements to adjust and take up the offset. This capability prevents excessive side loads on the shafts and bearings, reducing wear and increasing the lifespan of the equipment.
  • Axial Misalignment: Axial misalignment occurs when there is a linear displacement of one shaft relative to the other, either toward or away from the other shaft. Some flexible couplings, such as certain types of flexible disc couplings, can accommodate a limited amount of axial misalignment. However, for large axial movement, other types of couplings or special designs may be required.

The flexibility of the coupling elements allows them to act as a buffer between the shafts, dampening shocks, vibrations, and torsional forces caused by misalignment or other dynamic loads. This helps protect the connected equipment from damage and enhances the overall performance and reliability of the rotating system.

In large rotating equipment, where misalignment is more common due to thermal expansion, foundation settling, or other factors, flexible couplings play a critical role in maintaining smooth operation and reducing stress on the machinery. However, it is essential to choose the appropriate type of flexible coupling based on the specific requirements of the application and to regularly inspect and maintain the coupling to ensure optimal performance and longevity.

flexible coupling

What is a flexible coupling and how does it work?

A flexible coupling is a mechanical device used to connect two shafts while allowing for relative movement between them. It is designed to transmit torque from one shaft to another while compensating for misalignment, vibration, and shock. Flexible couplings are essential components in various rotating machinery and systems, as they help protect the connected equipment and enhance overall performance.

Types of Flexible Couplings:

There are several types of flexible couplings, each with its unique design and characteristics. Some common types include:

  • Jaw Couplings: Jaw couplings feature elastomer spiders that fit between two hubs. They can accommodate angular and parallel misalignment while dampening vibrations.
  • Disc Couplings: Disc couplings use thin metallic discs to connect the shafts. They are highly flexible and provide excellent misalignment compensation.
  • Gear Couplings: Gear couplings use gear teeth to transmit torque. They offer high torque capacity and can handle moderate misalignment.
  • Beam Couplings: Beam couplings use a single piece of flexible material, such as a metal beam, to transmit torque while compensating for misalignment.
  • Bellows Couplings: Bellows couplings use a bellows-like structure to allow for axial, angular, and parallel misalignment compensation.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot to allow for misalignment compensation.

How a Flexible Coupling Works:

The operation of a flexible coupling depends on its specific design, but the general principles are similar. Let’s take the example of a jaw coupling to explain how a flexible coupling works:

  1. Two shafts are connected to the coupling hubs on either side, with an elastomer spider placed between them.
  2. When torque is applied to one shaft, it causes the spider to compress and deform slightly, transmitting the torque to the other shaft.
  3. In case of misalignment between the shafts, the elastomer spider flexes and compensates for the misalignment, ensuring smooth torque transmission without imposing excessive loads on the shafts or connected equipment.
  4. The elastomer spider also acts as a damping element, absorbing vibrations and shocks during operation, which reduces wear on the equipment and enhances system stability.

Overall, the flexibility and ability to compensate for misalignment are the key features that allow a flexible coupling to function effectively. The choice of a specific flexible coupling type depends on the application’s requirements, such as torque capacity, misalignment compensation, and environmental conditions.

China manufacturer Ductile Iron Rigid or Flexible Coupling  China manufacturer Ductile Iron Rigid or Flexible Coupling
editor by CX 2024-05-07


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *