Select Page

Solution Description

Flexible aluminum coupling for ball screw motor 

Specs
one.The resources of Spider:German Bayer.
two.Tough Aluminum alloy

Your type response of below queries will aid us to recomemnd the most suited product to you asap.
one.Areyou seeking for Setscrew sort or Clamp variety?
two.what is coupling outer dimeter size?
three.what is coupling interior bore dimension and duration?
four.what is coupling material(aluminium or Stainless steel )?

Proportions:

Model Internal bore D
(mm)
L
(mm)
Nominal Torque
(N.m)
The Max of Torque
(N.m)
dmin dmax
JM2-twenty five 4 twelve 25 34 5. ten.
JM2-thirty six sixteen thirty 35 seven.4 fourteen.8
JM2-40 10 24 forty sixty six nine.five 19.
JM2-fifty five twelve 28 fifty five seventy eight 34 sixty eight
JM2-65 fourteen 38 65 ninety ninety five one hundred ninety
JM2-eighty 24 45          80 114 one hundred thirty five 270
JM2-95 30 55           ninety five 126 230 460
JM2-one hundred and five 35 60         one zero five a hundred and forty 380 760
Product Allowable pace
(rpm)
Radial Misalignment(m.m) Angular
Misalignment(°)
Axle
Misalignment(mm)
JM2-twenty five 17000 .02 1. +.60
JM2-thirty 12000 .02 1. +.sixty
JM2-40 ten thousand .02 1. +.80
JM2-fifty five 8000 .02 one. +.eighty
JM2-sixty five 6000 .02 1. +.80
JM2-eighty 4600 .02 1. +1.00
JM2-95 3800 .02 1. +1.00
JM2-one hundred and five 3400 .02 1.

 

US $0.1-50
/ Piece
|
1 Piece

(Min. Order)

###

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 2-60mm
Speed: 5500-19000r/M
Structure: Flexible

###

Customization:

###

Model Inner bore D
(mm)
L
(mm)
Nominal Torque
(N.m)
The Max of Torque
(N.m)
dmin dmax
JM2-25 4 12 25 34 5.0 10.0
JM2-30 6 16 30 35 7.4 14.8
JM2-40 10 24 40 66 9.5 19.0
JM2-55 12 28 55 78 34 68
JM2-65 14 38 65 90 95 190
JM2-80 24 45          80 114 135 270
JM2-95 30 55           95 126 230 460
JM2-105 35 60         105 140 380 760
Model Allowable speed
(rpm)
Radial Misalignment(m.m) Angular
Misalignment(°)
Axle
Misalignment(mm)
JM2-25 17000 0.02 1.0 +0.60
JM2-30 12000 0.02 1.0 +0.60
JM2-40 10000 0.02 1.0 +0.80
JM2-55 8000 0.02 1.0 +0.80
JM2-65 6000 0.02 1.0 +0.80
JM2-80 4600 0.02 1.0 +1.00
JM2-95 3800 0.02 1.0 +1.00
JM2-105 3400 0.02 1.0
US $0.1-50
/ Piece
|
1 Piece

(Min. Order)

###

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 2-60mm
Speed: 5500-19000r/M
Structure: Flexible

###

Customization:

###

Model Inner bore D
(mm)
L
(mm)
Nominal Torque
(N.m)
The Max of Torque
(N.m)
dmin dmax
JM2-25 4 12 25 34 5.0 10.0
JM2-30 6 16 30 35 7.4 14.8
JM2-40 10 24 40 66 9.5 19.0
JM2-55 12 28 55 78 34 68
JM2-65 14 38 65 90 95 190
JM2-80 24 45          80 114 135 270
JM2-95 30 55           95 126 230 460
JM2-105 35 60         105 140 380 760
Model Allowable speed
(rpm)
Radial Misalignment(m.m) Angular
Misalignment(°)
Axle
Misalignment(mm)
JM2-25 17000 0.02 1.0 +0.60
JM2-30 12000 0.02 1.0 +0.60
JM2-40 10000 0.02 1.0 +0.80
JM2-55 8000 0.02 1.0 +0.80
JM2-65 6000 0.02 1.0 +0.80
JM2-80 4600 0.02 1.0 +1.00
JM2-95 3800 0.02 1.0 +1.00
JM2-105 3400 0.02 1.0

What Is a Coupling?

A coupling is a mechanical device that links two shafts together and transmits power. Its purpose is to join rotating equipment while permitting a small amount of misalignment or end movement. Couplings come in a variety of different types and are used in a variety of applications. They can be used in hydraulics, pneumatics, and many other industries.
gearbox

Types

Coupling is a term used to describe a relationship between different modules. When a module depends on another, it can have different types of coupling. Common coupling occurs when modules share certain overall constraints. When this type of coupling occurs, any changes to the common constraint will also affect the other modules. Common coupling has its advantages and disadvantages. It is difficult to maintain and provides less control over the modules than other types of coupling.
There are many types of coupling, including meshing tooth couplings, pin and bush couplings, and spline couplings. It is important to choose the right coupling type for your specific application to get maximum uptime and long-term reliability. Listed below are the differences between these coupling types.
Rigid couplings have no flexibility, and require good alignment of the shafts and support bearings. They are often used in applications where high torque is required, such as in push-pull machines. These couplings are also useful in applications where the shafts are firmly attached to one another.
Another type of coupling is the split muff coupling. This type is made of cast iron and has two threaded holes. The coupling halves are attached with bolts or studs.
gearbox

Applications

The coupling function is an incredibly versatile mathematical tool that can be used in many different scientific domains. These applications range from physics and mathematics to biology, chemistry, cardio-respiratory physiology, climate science, and electrical engineering. The coupling function can also help to predict the transition from one state to another, as well as describing the functional contributions of subsystems in the system. In some cases, it can even be used to reveal the mechanisms that underlie the functionality of interactions.
The coupling selection process begins with considering the intended use of the coupling. The application parameters must be determined, as well as the operating conditions. For example, if the coupling is required to be used for power transmission, the design engineer should consider how easily the coupling can be installed and serviced. This step is vital because improper installation can result in a more severe misalignment than is specified. Additionally, the coupling must be inspected regularly to ensure that the design parameters remain consistent and that no detrimental factors develop.
Choosing the right coupling for your application is an important process, but it need not be difficult. To find the right coupling, you must consider the type of machine and environment, as well as the torque, rpm, and inertia of the system. By answering these questions, you will be able to select the best coupling for your specific application.
gearbox

Problems

A coupling is a device that connects two rotating shafts to transfer torque and rotary motion. To achieve optimal performance, a coupling must be designed for the application requirements it serves. These requirements include service, environmental, and use parameters. Otherwise, it can prematurely fail, causing inconvenience and financial loss.
In order to prevent premature failure, couplings should be properly installed and maintained. A good practice is to refer to the specifications provided by the manufacturer. Moreover, it is important to perform periodic tests to evaluate the effectiveness of the coupling. The testing of couplings should be performed by qualified personnel.
China Flexible Aluminum Coupling for Ball Screw Motor     coupling capacitanceChina Flexible Aluminum Coupling for Ball Screw Motor     coupling capacitance
editor by czh 2022-12-23