China Good quality Best Coupling Manufacturer for PU Flexible Coupling

Product Description

Product description 

Material

 Materials for silicon,fluorine,NBR,FPM,EPDM,SILCONE ACM,HNBR
Inspection Equipments  Excellent chemical and physical property, excellent oil- resistance, high temperature stability, etc.
Tolerance  +/-0.05mm
Drawing Format  PDF/DWG/DXF/IGS/STEP,etc
Application field  Parts are used on vehicles, printing machines, food processing machines, textile machines, electronic machines, etc.
Manufacturing  process  CNC machining Broaching, Drilling, Milling, Other Machining Services, Rapid Prototyping, Turning,
Shape  As per your drawing Or your sample
Color service   Customization
QC inspection

 Make sure 100% inspection before the delivery

Advantages Maintenance,acturally HRC coupling doesn’t need maintenance.
Environmental, elastic components make HRC coupling applies to a variety of working conditions.

Reliable transmission, in case of elastic component is damaged, the dog segment wichcasted siamesedly still keep the transmission processing reliably.

Economic, HRC couplings have already been made of optimization design,which make transmission power match the transmission shaft diameter.

Good recovery capacity, elastic components can reduce the load at the CHINAMFG moments, and the deviation is a major consideration when designing.

Adaptability of misalignment, HRC can coupling contains parallel shift, angle shift and axis shift which happen some times.

Application and analysis

Our warehouse

Custom rubber parts

Custom plastic parts

Packing & Delivery

Packaging Details: plastic bag packing inside, carton packing outside, or customized packing.
Port:Xihu (West Lake) Dis.g port, ZheJiang city.
Lead Time :

Quantity(Pieces) 1 – 1000 1001 – 10000 10001 – 50000 >50000    
Est. Time(days) 5 12 18 To be negotiated  

 

Place order steps

Our Services:

1. Convenient: 24th Hours sales/After-sales Service online or on the phone.

2. Quality Assurance: We will discuss with you and supply you the best quality comfortable to your market.

3. Quick delivery: Time is money, we promise we always will deliver the goods quicker than others.

4. According to customers’ drawing,customized specifications are welcomed.

5. Small orders can be accepted.

Packing

Company Profile

SHEN ZHOU CHINAMFG RUBBER & PLASTIC CO.,LTD was founded in 2000. The factory located in industrial zone of HangZhou city, ZheJiang province, china.

We have Plastic injection molding workshop and rubber compression molding workshops.Our main products includes Bakelit Knobs,Pull Handle,rubber door stops, door guard, roller, rubber bumpers, Rubber grommets, vibration dampers, seals, plastic corner, injection plastic brackets, injection plastic shell.to undertake various kinds of rubber molding and plastic injection parts, customize according to drawing and samples. 

The products have been exported to America, Europe, Oceania, Middle East, Southeast Asia and other regions and countries, and hope to build more business Cooperation with new client from all over the world.

FAQ

Q1: Are you a manufacturer or a trading company?

A1: We are the original manufacturer of custom rubber parts and custom plastic parts.

Q2: Where is your company located?

A2: Our company is located in HangZhou City, ZheJiang Province, China.

Q3: Could I get free samples?

A3: We could provide small samples for free, but air freight or sea freight should be borne by customer side.

Q4: What should I provide in order to get an offer?

A4: Customers are required to provide material, inner diameter, outer diameter, cross section distance and quantity.

Q5: How is the goods packed by your factory?

A5: The goods are normally packed by plastic bags, carton boxes with pallets or wooden boxes.

Q6: What are the incoterms applied?

A6: The incoterms applied are FOB, CIF and CFR.

Q7: What are the payment terms accepted?

A7: We accept Alibaba Trade Assurance, T/T, L/C and West Union.

Q8: What about the delivery time?

A8: The goods are normally dellivered to customer side within 7-30 days based CHINAMFG the mode of transport required.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the key features to look for when purchasing a flexible coupling?

When purchasing a flexible coupling, several key features should be considered to ensure it meets the specific requirements of the application and provides reliable performance. The following are the key features to look for:

  • 1. Type of Coupling: There are different types of flexible couplings available, such as jaw couplings, beam couplings, bellows couplings, disc couplings, and more. Each type has its advantages and limitations, so choosing the right type depends on factors like misalignment compensation needed, torque capacity, and application requirements.
  • 2. Material: The material of the coupling is crucial for its durability and performance. Common materials include stainless steel, aluminum, steel, and various elastomers. Select a material that can withstand the environmental conditions, loads, and temperature ranges of the application.
  • 3. Size and Dimensions: Ensure that the coupling’s size and dimensions match the shaft sizes and available space in the system. Oversized or undersized couplings may lead to inefficiencies, misalignment, and reduced performance.
  • 4. Torque Rating: Consider the maximum torque the coupling can handle to ensure it can transmit the required power without failure or damage.
  • 5. Speed Rating: Check the coupling’s maximum rotational speed capability to ensure it can handle the desired operating speed without issues.
  • 6. Misalignment Compensation: Different couplings offer varying degrees of misalignment compensation, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the expected misalignments in the system.
  • 7. Backlash: For precision applications, consider couplings with minimal or zero-backlash to prevent motion inaccuracies and ensure precise positioning.
  • 8. Operating Environment: Assess the environmental conditions, including temperature, humidity, dust, and chemical exposure, and select a coupling with suitable resistance to these factors.
  • 9. Maintenance: Decide whether maintenance-free couplings or those requiring periodic lubrication align better with the application’s requirements and maintenance schedule.
  • 10. Electrical Isolation: If required, choose couplings with electrical isolation features to prevent current flow between connected shafts.
  • 11. Dynamic Behavior: Evaluate the coupling’s dynamic performance, including resonance and damping characteristics, to ensure smooth operation under various loads and speeds.
  • 12. Application Compatibility: Verify that the selected coupling is suitable for the specific application, such as pumps, compressors, robotics, automation, or other industrial processes.

Summary: When purchasing a flexible coupling, consider factors such as the type of coupling, material, size, torque rating, speed rating, misalignment compensation, backlash, operating environment, maintenance, electrical isolation, dynamic behavior, and application compatibility. Careful consideration of these features will ensure that the coupling meets the demands of the application, provides reliable performance, and contributes to the overall efficiency of the mechanical system.

flexible coupling

How does a flexible coupling handle misalignment in large rotating equipment?

Flexible couplings are designed to accommodate various types of misalignment in large rotating equipment, ensuring smooth and efficient power transmission while minimizing stress on connected components. Here’s how flexible couplings handle different types of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two connected shafts are not collinear and form an angle. Flexible couplings can handle angular misalignment by allowing the coupling elements to flex and move slightly, thus accommodating the angle between the shafts. The flexible elements, often made of elastomeric materials or metallic membranes, can bend and twist to compensate for angular misalignment, ensuring that the coupling remains engaged and transfers torque effectively.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the two shafts are not perfectly aligned along their axes, resulting in a lateral shift. Flexible couplings can handle parallel misalignment through their ability to move radially, allowing the flexible elements to adjust and take up the offset. This capability prevents excessive side loads on the shafts and bearings, reducing wear and increasing the lifespan of the equipment.
  • Axial Misalignment: Axial misalignment occurs when there is a linear displacement of one shaft relative to the other, either toward or away from the other shaft. Some flexible couplings, such as certain types of flexible disc couplings, can accommodate a limited amount of axial misalignment. However, for large axial movement, other types of couplings or special designs may be required.

The flexibility of the coupling elements allows them to act as a buffer between the shafts, dampening shocks, vibrations, and torsional forces caused by misalignment or other dynamic loads. This helps protect the connected equipment from damage and enhances the overall performance and reliability of the rotating system.

In large rotating equipment, where misalignment is more common due to thermal expansion, foundation settling, or other factors, flexible couplings play a critical role in maintaining smooth operation and reducing stress on the machinery. However, it is essential to choose the appropriate type of flexible coupling based on the specific requirements of the application and to regularly inspect and maintain the coupling to ensure optimal performance and longevity.

flexible coupling

What materials are commonly used in manufacturing flexible couplings?

Flexible couplings are manufactured using a variety of materials, each offering different properties and characteristics suited for specific applications. The choice of material depends on factors such as the application’s requirements, environmental conditions, torque capacity, and desired flexibility. Here are some of the commonly used materials in manufacturing flexible couplings:

  • Steel: Steel is a widely used material in flexible couplings due to its strength, durability, and excellent torque transmission capabilities. Steel couplings are suitable for heavy-duty industrial applications with high torque requirements and harsh operating conditions.
  • Stainless Steel: Stainless steel is often used to manufacture flexible couplings in environments with high corrosion potential. Stainless steel couplings offer excellent resistance to rust and other corrosive elements, making them ideal for marine, food processing, and chemical industry applications.
  • Aluminum: Aluminum couplings are lightweight, have low inertia, and provide excellent balance. They are commonly used in applications where reducing weight is critical, such as aerospace and robotics.
  • Brass: Brass couplings are known for their electrical conductivity and are used in applications where electrical grounding or electrical isolation is required, such as in certain industrial machinery or electronics equipment.
  • Cast Iron: Cast iron couplings offer good strength and durability and are often used in industrial applications where resistance to shock loads and vibrations is necessary.
  • Plastic/Polymer: Some flexible couplings use high-performance polymers or plastics, such as polyurethane or nylon. These materials provide good flexibility, low friction, and resistance to chemicals. Plastic couplings are suitable for applications where corrosion resistance and lightweight are essential.
  • Elastomers: Elastomers are used as the flexible elements in many flexible couplings. Materials like natural rubber, neoprene, or urethane are commonly used as elastomer spider elements, providing flexibility and vibration damping properties.

The selection of the coupling material depends on the specific needs of the application. For instance, high-performance and heavy-duty applications may require steel or stainless steel couplings for their robustness, while applications where weight reduction is crucial may benefit from aluminum or polymer couplings. Additionally, the choice of material is influenced by factors such as temperature range, chemical exposure, and electrical requirements in the application’s operating environment.

Manufacturers typically provide material specifications for their couplings, helping users make informed decisions based on the specific demands of their applications.

China Good quality Best Coupling Manufacturer for PU Flexible Coupling  China Good quality Best Coupling Manufacturer for PU Flexible Coupling
editor by CX 2024-05-16


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *